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Phospholipid dispersed in aqueous buffer above their critical micellar concentration form bilayers, which
can spontaneously adopt closed metastable shapes with sizes ranging from a few hundred nanometers to few
tens of micrometers. The equilibrium shapes of these vesicles are well described by the Canham-Evans-
Helfrich curvature elastic energy. Their floppiness allows for thermal fluctuations to be easily detected, but no
spontaneous shape transformation is usually observed for vesicles of spherical topological genus �i.e., shapes
with no holes� because of strict geometrical constraints and/or energy barriers. This report shows that for a
particular class of shapes with spherical topological genus �starfish vesicles�, dramatic spontaneous shape
transformations can occur due to the degeneracy of the shape solutions, as demonstrated by numerical calcu-
lations. These predictions are supported by experimental observations of a three-arm starfish vesicle undergo-
ing spontaneous shape transformations similar to those predicted numerically.

DOI: 10.1103/PhysRevE.76.021914 PACS number�s�: 87.16.Dg

I. INTRODUCTION

The theory of equilibrium shapes of closed fluid bilayer
membranes �also referred to as vesicles or liposomes� has
been established some 30 years ago �1–3� and verified by
numerous experimental observations since then �for reviews
see, for instance, Refs. �4–6��. Although the focus of modern
membrane biophysics has shifted from simple single-
component bilayer structures to multicomponent, decorated,
scaffolded and/or out of equilibrium structures, to become
more relevant for understanding biological structures or for
the development of new materials �7�, simple systems are
always a good starting point to explore fundamental proper-
ties. The purpose of this article is to explore a very simple
property of some vesicles, the existence of continuous fami-
lies of closed bilayer vesicles with identical curvature elastic
energy but widely different shapes. Such degenerate families
of shapes have been observed in the past for vesicles of
nonspherical topological genus, i.e., vesicles whose shape
can be continuously deformed into a sphere with one or more
handles �for instance a doughnut shape vesicle has a topo-
logical genus 1, as it can be deformed into a sphere with one
handle� �8,9�. More precisely, this degeneracy of the equilib-
rium shape solution was supposed to require a topological
genus 2 or larger �10,11�. Although some biological mem-
brane structures such as mitochondria or cell nuclei have
nonspherical topologies, the importance of this type of ob-
servation remained largely theoretical. The demonstration
that such a property also applies to some shapes of topologi-
cal genus 0 �spherical genus�, resulting in dynamics shape
changes formally reminiscent of amoeboid motion or
pseudopod growth and retraction �12�, will hopefully gener-
ate further exploration of its relevance for biological and/or
technological questions.

The article is organized as follows. The first section will
briefly summarize the theory of equilibrium shape of vesicles
under geometrical constraints, and discuss the concept of

shape degeneracy. Sections II–IV will present some back-
ground information on starfish vesicles, describe numerical
studies of shape degeneracy in a special case of starfish
vesicle and present experimental observations of an example
of such shape degeneracy. Section V concludes the article
with a brief discussion.

II. EQUILIBRIUM SHAPES OF FLUID VESICLES

The fluidity of bilayers prevents any shear stress to build
up in the membrane leaving only two relevant deformations:
stretching and bending deformations. The large stretching
modulus of fluid membranes sets the energy cost of any sig-
nificant deviation from the equilibrium area molecular den-
sity to values much larger than the thermal energy scale rel-
evant in the present discussion, essentially fixing the surface
area of the vesicles �13�. Therefore, only the curvature
�or bending� elastic energy is relevant to account for vesicle
shapes in the absence of any applied stress. The curvature
elastic energy F can be expressed as an integral over the
whole surface,

F =
�

2
� dA�2H�2, �1�

where � is the bending rigidity modulus and the local mean
curvature H= 1

2 � 1
R1

+ 1
R2

� is defined in terms of the principal
radii of curvature of the surface, R1 and R2. The bending
rigidity modulus has the dimension of energy, and is typi-
cally of the order of 10–20 times the thermal energy, kBT �6�.
This explains the spontaneous thermal fluctuations easily ob-
served in the microscope, affecting the average shape of
vesicles �14�. Notice that we do not discuss here the contri-
bution FG of the Gaussian curvature G= 1

R1R2
to F, FG

=
�G

2 �dAG as it is a topological invariant �6�, and shape
transformations discussed in the article will conserve topo-
logical genus.

In addition to the conserved surface area �A�, two other
geometrical parameters appear sufficient to fully describe the
variety of observed shapes over typical observation time*michalet@chem.ucla.edu
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scales ��1 hour�: the vesicle volume �V� and area difference
��A�. The latter is defined as the area difference between the
outer and the inner monolayer, and its conservation is due to
the negligible exchange of material between the two bilay-
er’s leaflets during observation. Similarly, the aqueous vol-
ume enclosed in a vesicle is conserved due to the low per-
meability of bilayer membranes to water.

The equilibrium shapes of vesicles can be determined by
minimization of the curvature elastic energy F under con-
straints of fixed volume, surface area, and area difference
between the two leaflets of the membrane bilayer. Because
the curvature elastic energy F is scale invariant, the exact
size of the vesicle under study �typically from a few hundred
nanometers to a few tens of micrometers� does not matter,
and the equilibrium �or minimal� shape is thus defined by a
scale R and two dimensionless parameters, the reduced vol-
ume v and the reduced mean curvature m related to the area
difference �A by

R = �A/4��1/2, �2�

v =
3V

4�R3 , �3�

m = �A/�2dR� = M/R , �4�

where d is the bilayer thickness and M is the integrated mean
curvature �M = �dAH�. Inversely, v and m can be used to
define any equilibrium shape up to a scaling factor.

Minimization of F �Eq. �1�� under constraints is per-
formed using Lagrange multiplier for each constraint �V, A,
and M� and can be carried out analytically in some limited
cases only. Many solutions have been obtained by solving
the fourth-order partial differential equation to which the
Lagrange equation reduces in the case of axisymmetric
shapes �6�. The stability of such solutions with respect to
infinitesimal perturbations of the calculated solutions needs
to be verified, unstable solutions indicating that nonaxisym-
metric solutions are to be looked for. Nonaxisymmetric so-
lutions require a finite elements approach to model the three-
dimensional geometry of the vesicles and a direct numerical
minimization of the discretized energy, which has been done
successfully for different topologies �9,10,15–18�. The end
product of this tedious exploration of the shape phase space
is a phase diagrams in the �v ,m� parameter space, describing
the most stable shapes as a function of the constraints �6�.

III. METASTABLE SHAPES AND SHAPE
DEGENERACY

A shape phase diagram hides the fact that, in addition to
absolute minima of F �under constraints �v ,m��, many rela-
tive minima of F with identical geometrical parameters are
the solution of the constrained minimization problem. One
defines the shape with minimum energy as the “stable” one
and all others as “metastable” ones, although metastable
shapes are perfectly stable with respect to infinitesimal per-
turbations �being solutions of the problem as defined in the
previous section�.

Metastable shapes cannot transform into the stable one
because of the large bending energy cost required to continu-
ously transform the former into the latter, although this bar-
rier can be overcome by thermal energy alone in some spe-
cific cases where the barrier is sufficiently low �19�. The
existence of these barriers makes “metastable” shapes ex-
tremely stable in practice and perfectly observable, provided
they can be generated during the vesicle formation process.
Such metastable shapes have indeed been experimentally ob-
served for spherical �16� and nonspherical topological genera
�9�. In this respect, studying metastable solutions of the mini-
mization problem is experimentally relevant, although the
vesicle formation processes which yield metastable shapes
remains a highly uncontrolled one and there is currently
no practical way to willingly obtain a specific shape experi-
mentally.

What makes the problem of the minimization of F under
constraints even more complex is the existence not only of
metastable states, but in some cases of degenerate minima of
F. Two different situations may occur: �i� these minimal so-
lutions are separated by energy barriers in the shape phase
space, or �ii� these solutions belong to a continuous family of
solutions �not separated by energy barriers�. The first situa-
tion has been described in a few cases for shapes of spherical
topological genus �16,19� and will be discussed in more de-
tail in the next section. Examples where the second kind of
degeneracy occurs have been presented both theoretically
�10,11� and experimentally �8,15� in the case of shapes of
topological genus larger than 1. In these cases of degenerate
minima, no shape is more probable than another, and a con-
tinuous, random exploration of the whole shape family is
experimentally observed, with a typical time scale of several
minutes, which markedly distinguishes it from mere shape
fluctuations. Up to now, these zero-energy mode shape trans-
formations have only been predicted and observed for shapes
with more than one hole �topological genus larger than 1�.

IV. STARFISH VESICLES

A. Basic facts and a conjecture

In an esthetically fascinating report, Wintz et al. described
several starfishlike vesicles whose shapes they could repro-
duce by numerical minimization of the curvature elastic en-
ergy �16�. Among this class of shapes, initially reported by
Hotani �20�, they showed that several different shapes exist
having the same energy, but characterized by different sym-
metry groups. These shapes are all solutions of the minimi-
zation problem under the same geometrical constraints and
very stable. In particular, no transformation from one shape
to another was observed experimentally. As discussed previ-
ously, this can be attributed to energy barriers separating the
different minima of the curvature elastic energy that thermal
energy alone cannot overcome. Another recent report �18�,
has identified starfish vesicles as the most stable equilibrium
shapes in a region of the phase diagram with larger reduced
volume v �0.5�v�0.6� than those reported by Wintz et al.
�0.3�v�0.5�. Quoting Ref. �16�, all these shapes can be
qualitatively described as “built up using three structural el-
ements. The center consists of a quite flat, nearly axisymmet-
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ric core. Attached to this core are cylindrical arms which end
in spherical caps. The radius of the caps is somewhat larger
than the radius of the cylinder. The overall shape is quite
flat.” Fig. 1 illustrates this construction principle for a three-
arm starfish vesicle. Note that such shapes are also observed
in multicomponent vesicles �21�. To obtain a qualitative idea
of the geometric characteristics of these shapes, we shall
consider shapes consisting of n very long cylindrical arms of
total length L and diameter d�L. For long enough arms, the
contribution of the core and the caps to the total volume and
area will be negligible, and the approximate reduced volume
of such shapes will be

v �
3

2
� d

L
	1/2

. �5�

Similarly, the mean reduced curvature of such shapes is
given by

m � 2�� d

L
	−1/2

, �6�

and its curvature elastic energy by

F � 2��� d

L
	−1

. �7�

As a reminder, the curvature elastic energy of a sphere is
8��. Starfishs with v=0.3 thus correspond to d /L�0.04,
m�2.5�4�, and F�6.25�8��. Shapes with smaller d /L
ratio correspond to a region of the phase diagram that re-
mains to be investigated as far as nonaxisymmetric shapes
are concerned.

The simple description of starfish vesicles of small aspect
ratio d /L as a series of n closed tubular sections connected to
a small hub region suggests that in the limit of very long
tubular sections, the exact length Li of each tubular section i
should not matter much, the total length L=�Li being the
only parameter entering Eqs. �5�–�7� �with the additional pa-

rameter d�. In other words, we can conjecture that there
might be an infinite number of families of starfish vesicles

n ,v ,m� with n arms of variable lengths 
Li� but equal total
length L having identical geometrical parameters �v ,m� and
energy F. Since the transformation from one such hypotheti-
cal starfish vesicle 
Li� of a given family to an infinitesimally
close one 
Li , . . . ,Lk−�L , . . . ,Lp+�L , . . .Ln� consists in a
simple exchange of lipids from one arm �k� to the other �p�,
there should be no curvature elastic energy barrier to this
transformation and all shapes belonging to a given family

n ,v ,m� should be able to continuously transform into one
another.

B. Numerical study of shape degeneracy in starfish vesicles

The previous simple approximation of the shape of star-
fish vesicles neglects the contribution of the caps and hub to
v and m and ignores the likely departure of the arm shapes
from exact cylinders. Any minute changes in shape could
result in a non-negligible change in curvature elastic energy,
and invalidate the previous conjecture. A simple and neces-
sary test therefore consists in performing a direct minimiza-
tion of the curvature elastic energy under constraints.

The SURFACE EVOLVER is a convenient software to do this.
Developed by Brakke �22,23�, it is freely available �32�, and
has been successfully used for various vesicle shape calcula-
tions �8,9,15,17,18� among other applications. It is straight-
forward to define triangulated surfaces approximating three-
arm starfish vesicles. Figure 2 shows an example of a starting
surface used in the calculations described here. It consists in
18 vertices, 27 edges �segment connecting two vertices�, and
11 facets �list of oriented edges�. An example SURFACE

EVOLVER file is provided in Ref. �31�. The volume V, area A,
and mean integrated curvature M were computed and set as
constraints for the minimization. Each surface was then
“evolved” to minimize the curvature elastic energy F using
SURFACE EVOLVER. The SURFACE EVOLVER “evolves” the sur-
face toward minimal energy by a gradient descent method,
moving each vertex by a multiple of the force applied to this
vertex �22�. In a second phase, the constraints were changed
stepwise to reach the target values of the surface family.
After each constraint modification, the surfaces were evolved
to minimize F. Finally the shapes were progressively refined
and evolved to minimize the curvature elastic energy under
the target constraints.

Since F is scale invariant, the length scale is arbitrary. To
fix the ideas, let us set L=21 and d=1 �arbitrary units�. The
most symmetric starfish of the family is given by L1=L2
=L3=7. To keep the number of calculations manageable,
only members of the family with integer arm length were
considered. Shapes with initial arm size smaller than 3 were
not stable. This leaves only 19 members with initial integer
arm size �L1 ,L2 ,L3�= �i , j , �21− i− j�� with �3� i , j�9�, as
listed in Table I. All these shapes were calculated to a final
resolution of �10 000 facets and evolved until a stable en-
ergy was obtained. Examples of these solutions with a com-
mon reduced volume v=0.297 and reduced mean curvature
m=2.269�4� are represented in Fig. 3. The stability of the
shapes was tested by small random perturbations applied

FIG. 1. �Color online� Schematic decomposition of starfish
shapes in terms of cylinder sections, caps and hub.
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globally to the shape, a noteworthy feature of the SURFACE

EVOLVER. All shapes converged back to their previous mini-
mum. Although only the initial geometry and the constraints
were fixed, all 19 shapes ended up having a similar energy

F=6.716�2��8�� which can in fact be considered identical
up to the numerical uncertainty of this calculation.

Although limited to a single set of �v ,m� values and to a
family of n=3 arm vesicles, these calculations strongly sug-
gest the validity of the conjecture according to which there
exist degenerate families of starfish vesicles in the region of
low reduced volume. The practical implication of this pre-
diction is that, should such vesicles be observed, no specific
shape within a family is energetically favored, and therefore
random exploration of the whole family should take place.
Such random exploration can be pictured as a random diffu-
sion in the phase space consisting of all the shapes belonging
to a starfish family �n ,v ,m� such as the one described for
higher topological genus shapes �11�. For the case of three-
arm starfish vesicles, the numerical calculation confirms that
the relevant descriptive parameter of each shape is the three-
arm lengths L1, L2, and L3 �constrained by L1+L2+L3= con-
stant�, since all arms have an identical diameter and volume
is conserved. A simple representation of such a shape is a
point located within an isosceles triangle of side 2/�3�L as
indicated in Fig. 4. Indeed, the sum of the distances to all
three sides is a constant equal to the height of the triangle.
Random exploration of the shape family can therefore be
represented as a random path within the boundaries of the
triangle.

The next section provides experimental evidence of these
different predictions.

C. Experimental observation of shape degeneracy
in starfish vesicle

Vesicles were formed using standard material and proto-
cols. 1 mg of dimyristoylphosphatidylcholine �DMPC,
Avanti Polar Lipids� was hydrated with 10 	l of citrate
coated �negatively charged� magnetic particles �24,25� and
500 	l of doubly distilled water �pH�7�. Vesicles sponta-
neously form after several hours of incubation at room tem-
perature, after which an aliquot was mounted in a sealed
observation chamber. Vesicles were observed at room tem-
perature ��25 °C� with an inverted phase contrast micro-
scope equipped with an �40 objective �Nikon�. At this tem-
perature, DMPC bilayers are in the fluid phase �26�. Further

FIG. 2. �a� Starting point for the SURFACE EVOLVER calculations
consisting of 18 vertices, 27 edges, and 11 facets. The vertices
definition corresponds to that used in the Evolver file provided in
Ref. �31�. �b� Surface after a few rounds of refinement.

TABLE I. Sets of starfish arm length �L1 ,L2 ,L3�= �i , j ,21
− �i+ j�� used in the reported calculation.

3, 3, 15 3, 4, 14 3, 5, 13 3, 6, 12 3, 7, 11 3, 8, 10 3, 9, 9

4, 4, 13 4, 5, 12 4, 6, 11 4, 7, 10 4, 8, 9

5, 5, 11 5, 6, 10 5, 7, 9 5, 8, 8

6, 6, 9 6, 7, 8

7, 7, 7

FIG. 3. �Color online� Examples of computed starfish shapes
with v=0.297, m=2.269�4�. Each shape is labeled with the three-
arm lengths: L1 L2 L3 �in arbitrary units�. The shapes are composed
of �10 000 facets, and have a similar energy of 6.716�2��8��.
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magnification was available through a ��0.9– �2.25� zoom
module to which a simple monochrome video charge-
coupled device camera was attached. The video was re-
corded on S-VHS videotapes and later on digitized using a
frame-grabber installed in a personal computer.

Vesicles were formed in a dilute ferrofluid solution in the
hope that this would permit their manipulation by application
of a magnetic field �27�. In practice, the only observable
effect of an external magnetic field temporarily applied with
the help of a small handheld 1 Tesla magnet in the vicinity
of the observation chamber was to create a flow surrounding
the vesicles, by which they could be dragged. All the obser-
vations described in the following were performed in the
absence of a magnetic field, and it is therefore assumed that
the minute amount of ferrofluids present in the solution had
no bearing on the behavior of the vesicles.

Figure 5 shows a series of phase contrast images of a
three-arm starfish vesicle taken from the movie provided as

supplementary information �31�. Qualitatively, the vesicle
shapes appear similar to those described in the previous sec-
tion and represented in Fig. 3, although the hub diameter is
larger in the simulated shapes. This discrepancy is due to the
fact that the vesicle does not have the same geometric pa-
rameters �v ,m� as those chosen for the numerical example
described previously. Over time, the arms appear to grow or
shrink randomly, while preserving the initial volume of the
vesicle and as well as the arms diameter. The typical time
scale of the vesicle evolution is several minutes, and can be
more fully appreciated by looking at the accelerated movie
provided as supplementary information �31�.

Following the notations introduced previously, each state
of the starfish vesicle can be characterized by the set of three
armlengths �their sum total being constant within the experi-
mental uncertainty� and represented in an isosceles triangle
in which the “path” of the vesicle can be followed minute by
minute �Fig. 6�. The evolution is spontaneous and seems ran-
dom during the observation period, with bouts of faster evo-
lution �as between t0+24 min and t0+25 min� or slower one
�as in the first 10 minutes�.

V. DISCUSSION

A. Numerical results

The numerical results of the previous section are no proof
of the exact degeneracy of the curvature elastic energy F but
are as close as one can get obtain with this approach from
establishing the existence of a continuous family of starfish
vesicles with identical geometric parameters �v ,m�. It is easy
to extend these calculations to different sets of parameters
using the SURFACE EVOLVER and the source file provided in
�31�. In particular, by reducing the aspect ratio d /L, starfish

t0
L2 L1

4'9'
12'

17' 20'
22'

26'

29'

L3

FIG. 6. Path of the starfish vesicle. Each state of the vesicle
is defined by the lengths of its three arms, L1, L2, and
L3=L− �L1+L2�, where L is the sum total length and is represented
by a circle. For instance, the length of arm 1 �pointing to the lower
left, and later on due to rotation, to the upper left in Fig. 5� can be
read along the direction of the dashed line marked L1 as the distance
towards the opposite face. The vesicle state is represented every
minute, except for a brief period between the 24th and 25th minutes
during which the shape evolution accelerated �dashed line�, where it
is reported every 5 seconds.

FIG. 4. Schematic representation of the phase space of starfish
vesicles of a degenerate family. A point M within the isosceles
triangle ABC of side a and height L=�3/2�a is the summit of
three triangles: MAB, MBC, MCA. The respective areas of these
triangles are: 1

2 MM3�AB, 1
2 MM2�BC, 1

2 MM1�CA. Their total
area 1

2a�MM1+MM2+MM3� equals that of the triangle ABC
= 1

2aL. Therefore any point M within the triangle represents a
vesicle of arm length �L1 ,L2 ,L3�= �MM1 ,MM2 ,MM3� with L1

+L2+L3=L.

t0 4' 9'

12'17'

20' 22' 26' 29'

FIG. 5. Series of phase contrast images of a three-arm starfish
vesicle. The time after the beginning of observation is indicated in
minutes. Scale bar �for all images� represents 20 	m.
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surfaces with much lower �and in principle arbitrarily low�
reduced volume could be obtained.

As suggested by the calculations of Wintz et al. families
of starfish vesicles with more than three arms should also be
considered and are likely to give similar results as reported
here in the limit of long arms �and small aspect ratio�. That
is, only the total length of all arms matters, and shapes with
different sets of arm lengths will turn out to have identical
energies F. The extension of the numerical work presented
here to larger n does not present any difficulty of principle.
Interestingly, starfish shapes considered up to now have been
limited to shapes with a plane of symmetry �or “flat” star-
fish�. There does not seem to be any reason why shapes with
other groups of symmetry �in the case of the shape with n
arms of equal length� or even no symmetry at all would not
be stable. The simplest example of such a shape would be a
four-arm vesicle with the hub section at the center of a tet-
rahedron, and arms directed towards the summits. Such “ur-
chin” or echinocyte and/or acanthocyte shapes �which have
been computed at much higher reduced volume �17�� would
considerably increase the population of low reduced volume
shapes of the phase diagram exhibiting shape degeneracy,
and do not present any difficulty of principle to study
numerically.

B. Experimental results

The experimental observations presented here confirm the
relevance of the numerical calculations, predicting the de-
generacy of a similar family of three-arm starfish shapes. The
identical curvature elastic energy of all shapes is expected to
translate in a random exploration of the family, as long as the
shape transformation does not involve any other energy cost.
In fact, the shape transformations in solution �by opposition
to shape transformations in silico� involve moving parts of
the vesicle through a fluid environment, which should come
at an energetic cost due to the viscous drag. It is well known,
however, that Brownian rotation and translation of vesicles
due to thermal agitation are commonly observed in solution.
Therefore thermal energy should be sufficient to overcome
the viscous drag on the moving parts of the vesicle, and the
observations reported above are consistent with this scenario.
A typical time scale 
dif for this motion is obtained by con-
sidering the linear Brownian diffusion of a hemispherical cap
of diameter d over a distance L �since only the tips of the
arms actually move within the fluid�. Using the Stokes-
Einstein expression for the diffusion coefficient D,


dif �
L2

2D
=

3�

2

�L2d

kBT
, �8�

where � is the fluid viscosity. With �water=0.001 Pa s, L
=30 	m, d=3 	m, we obtain 
dif �52 min. This value com-
pares qualitatively well with the observed duration of a

single arm growth or shrinkage of �10 min. Its order of
magnitude is in any case markedly different from the typical
time scale 
und of a few seconds for the thermal undulations
of a tubular membrane �28,29�, which can also be observed
in the movie provided as supplementary information �31�.

A characterization of the lipid dynamics in the membrane,
for instance using fluorescence markers, would allow deter-
mining whether the observed time scale and shape transfor-
mation involves anything else than pure lipid diffusion. Fu-
ture experiments may also yield longer trajectories in phase
space enabling a better quantification of the randomness of
these shape transformations.

C. Perspectives

As discussed previously, the degeneracy of the set of so-
lutions to the minimization problem exhibited here for three-
arm starfish vesicles is most likely occurring for n� three-
arm starfish vesicles as well and potentially more complex
geometries, all characterized by interconnected long tubular
sections. Similar geometries occur commonly in live organ-
isms, such as, for instance, in the architecture of the endo-
plasmic reticulum of mammalian cells or some mitochondria
structures. Whereas these structures have sometimes been
approached from the three-dimensional minimal surface
point of view, they are exactly so only in rare cases �30�, the
present work suggests that a more disordered description in
terms of �closed� interconnected tubules might shed light on
their dynamics. Indeed, one of the key points of this descrip-
tion is that some complex interconnected tubular shapes may
adopt very different conformations at no curvature elastic
energy cost, while maintaining their enclosed volume, sur-
face area, and area difference. In fact, based on previous
observations of fluctuating passages between stacks of mem-
branes �8�, the common picture emerging from these obser-
vations is that a large number of low reduced volume mem-
brane shapes occurring in nature �not necessarily tubular�
might belong to families of degenerate minima of the curva-
ture elastic energy. Of course, many biological membranes
are multicomponent, decorated with multiple proteins, and in
many cases, scaffolded by an underlying protein skeleton, in
which cases the simple energy considered here is insufficient
to account for their mechanical properties. It will therefore
be interesting to study the robustness of this degeneracy in
more complex models.
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